
A software tool for Bayes net development

Alan M. Kalet

May 9, 2015

1 Introduction

In this article I outline the details of a software tool designed to give users
a simple graphical interface for extracting dependency network topologies
from dependency layered ontologies. What is important about this tool and
how it is different from other software like Hugin or Netica is that it derives
knowledge directly from a dependency layered ontological knowledge base
and therefore does not require significant user input towards developing a
topological structure. There are many features which this tool does not
have, such as the ability to create conditional probability tables or perform
any sort of learning algorithms on data. However, topologies created with
this tool can be exported and read into other systems such as Hugin for those
tasks, making this tool complementary to other software systems for Bayes
net development.

2 Goals and architecture

I developed a user interface prototype, the “Bayesian Network Domain Ex-
plorer” (BNDE), with a few key goals. The first goal is to allow for users to
reasonably navigate an ontology class-subclass hierarchy and select concepts
of interest. Secondly, the software needs to generate and display the resulting
networks and information about those networks, as built from the ontological
knowledge base and user selections. Lastly, the software has to provide user
controlled network pruning and downloading of resulting network topologies
in useful formats for further use. In accordance with these goals, I also seek
platform independence, that is, to limit the software’s dependence on oper-
ating system, hardware, or other device types.

To meet these goals I use the shiny package for the R statistical pro-
gramming language. There are several advantages to using shiny for this

1

software. Shiny is a web application framework for R and can be run on a
local server tied to R processes [1]. This allows for fairly simple development
of web-based user interface tools while retaining access to powerful compu-
tational R libraries. Web-based also means that many widgets, buttons, lay-
outs, graphical methods, javascript and css stylesheets already available via
open source projects such as bootstrap [2] and other webtools can be utilized.
Because shiny applications are web-based, they are also fairly platform inde-
pendent. Shiny applications work on almost all common contemporary web
browsers, allowing users to apply their local browser settings, configurations,
and schemes independent of the application. Shiny also uses a reactive pro-
gramming model which effectively performs real-time updating of graphical
output (or any other reactive functionality) based on user input.

The essential model of reactivity in shiny applications is shown in Fig-
ure 1. A thorough overview of reactivity is given in RStudio’s article on
reactivity [3]. I present a shortened version for context. Client-side inputs
are tied to server-side outputs (or any other descendant server-side reactive
functions). When the input changes, the descendant functions are invali-
dated. After all invalidations are finished, the outputs (graphical display,
dynamic UI, etc) are flushed and redrawn using the new user inputs. This
event scheduling occurs on the order of milliseconds. The shiny server checks
for input changes frequently—effectively updating changes with high respon-
siveness. If an underlying server-side function needs to run for some time,
there can be delays in re-drawing the display. Fortunately, there are many
available features in the development set to provide client-side user feedback
during server-side computing processes.

Figure 1: Shiny reactivity-initial state with input (input$obs) and a valid
output (output$distPlot). The output distPlot gets invalidated, flushed,
and re-executed upon changes to input$obs

In order to meet the desired specifications above I employed the rrdf,
RHugin, shinysky, shinyBS, and shinyIncubator packages as well as a

2

set of developer defined functions. The core functionality relies on a few
computational tasks:

1. parse description logic ontology

2. search for dependency paths between nodes

3. prune the network nodes

Description logic ontologies can be read into R as a set of rdf triples,
however, they are represented as a Java class. To parse the ontology into
a more easily searched matrix of dependency triples, sparql queries of the
form below are employed to extract all the terms in the ontology which have
dependence on other terms. All terms in the new triple sets (for each type
of dependency) are SELECTed and collated to form a 3xN matrix.

CONSTRUCT {?object2 ro:dependsOn3 ?object1}

WHERE {?object1 rdfs:subClassOf ?restriction.

?restriction owl:onProperty ro:dependsOn3.

?restriction owl:someValuesFrom ?object2.

?restriction ?restrictionPredicate ?object2.}

From the larger ontology, the software now has a subset of triples to oper-
ate on. Here, a level-order non-binary search method (breadth-first search) is
used to traverse the set of triples to discover pathways between user defined
subset of terms. Marrying these core operations to the user interface requires
assigning a series of reactive elements. A broad overview of the architecture
which links UI inputs/outputs between the server, client, and client local
filesystem is shown in Figure 2. The user interface (UI) is tied to R pro-
cesses running on the server—gathering inputs and sending back outputs for
displays or requests for uploads/downloads. There are ontologies loaded on
the server filesystem, but options are available for users to upload their own
ontology to the server and access it using the UI running in the client’s local
browser.

Because the core functionality of this tool is to perform logical deductive
reasoning among dependent terminologies and express their topological con-
nections, it can technically be applied among non-probabilistic variables as
well, such as those found in computer programs. Therefore, if the application
is given an ontology of its own functional dependencies among variables and
reactive elements, it can describe itself! Figure 3 is a directed graph network
representing all chained dependencies among the various inputs, outputs, and
functions used in the BNDE to generate a network display. This was gen-
erated by uploading a dependency layered ontology representing the BNDE.

3

User Interface

Local
Ontology

R

Local
Ontology

Downloads:
• Hugin files
• References
• Ontology
• Plots

Server Browser Local filesystem

Figure 2: Dynamic information flow between the server, client, and local
filesystem in the BNDE

Concepts are prefixed to indicate their superclass (user interface input/out
GUI in:/GUI out:, or developer/reactive functions DFN:/RFN:). The RFN:Z

function generates the network graph object used by several components of
the software including a graph display function (GUI out:bnPlot) at the
bottom which generates the graph display output. At the time of writing,
the BNDE ontology is available in the server-side local ontology selection
list, that any brave of heart transparency seeking enthusiast might peruse to
understand better how the software application works.

3 User interface development

Much of the design for the BNDE software was guided by the fact that the
author of the software is also a potential future user. The layout of the tool
is limited to some extent by screen space in general, regardless of device.
The basic design is intended meet the goals of network development, i.e. the
information to be displayed is mainly classes, networks, and some widgets
for network pruning. However, this leaves little screen real-estate for other
planned features. Therefore, this software could not be programmed as a
flat-page site. This informed the choice to use a tabbed environment, where

4

Figure 3: Functional dependency graph among variables in the BNDE used
to generate network displays

additional features could be placed into other tabs. Having a tabbed page
also lets users stay on one site while working and not have to reload any
pages or refresh any information.

While some parameters can be static, others are functionally tied to net-
work properties in a dynamic way. For example, the displayed node names

5

can be longer than the size of the node circle and become difficult to read. So
the node width parameter is set as a function of the length (in characters) of
the node name. Css stylesheets are used to maintain legibility of text, as well
as minimal, gentle color schemes. Contrast is used to improve understanding
of presented information. I found it important to keep required user actions
as simple as possible, and provide useful feedback wherever issues arise.

4 Software features

The primary use of this software is to semi-automate the construction of de-
pendency networks (Bayesian networks) from a domain ontology knowledge
base. The domain ontology specifies what concepts are dependent on others,
so it is not necessary to have a priori knowledge of what they are. When the
user selects a set of concepts of interest, the tool will automatically create
the network nodes and arcs in a graph object and display the structure of the
network, among other things (described in more detail below). This eases
the development of Bayesian networks in that the user need not reconstruct
a network from scratch for every use case, nor search the literature or in-
terview domain experts to establish an appropriate network structure. The
interface is also interactive, thus, changes in concept selection, dependency
level, and other parameters result in real-time updating of the graphics and
other reactive features.

4.1 Ontology selection

In order to use this tool the user must select or upload an ontology. The
main sidebar panel has options to do both. Here, a dropdown menu has
been provided and a few preloaded ontologies can be selected from. Up-
loaded ontologies will appear in this selectable list of available ontologies
after successful upload. A simple ontology (”testontology.owl”) is available
for experimenting with software features. These ontologies contain object
properties that define the dependencies between classes.

Once an ontology is selected, the software will automatically read the
class-subclass hierarchy and recreate it in the main sidebar panel as a folder-
tree. It is generated from the ontology at the time of loading by using a
recursive function that traverses the ontology’s class-subclass tree to recreate
the class hierarchy. This folder tree structure is an instance of (javascript)
jstree and is therefore interactive and selectable. Though a few ontologies
are available locally, the uploading feature gives users the flexibility to use
these tools on any ontology constructed with the dependency layer protocol

6

e.g. object properties of “dependsOn” type.

4.2 Network topology

Figure 4: BNDE upload button and dropdown
menu for ontology selection.

With an ontology loaded and
a folder-tree built, a user
can select among the various
concepts shown in the folder
tree. Holding the ’ctrl’ key
selects for multiple concepts.
Selection of a concept or cat-
egory of concepts will add it
and any sub-concepts to the
checkbox list just to the right
of the folder tree. Some on-
tologies can be too large to
view easily in a folder dis-
play, so this list is here to
keep track of all the things
are have selected so far. The
checkbox group is also se-
lectable, so network nodes
can be removed and added
from the graph without re-
navigating the folder tree.

If dependencies among
the selected concepts exist,
then the network graph belonging to this set of concepts will be immediately
computed and displayed in this panel. If there are no dependencies among
the selected terms, nothing will be graphed or displayed, except an error
message (see section 4.6). Similarly, if a selected node has no edge connec-
tion to any other terms in the set, it will not be displayed or included in the
graph structure. If the dependency properties in the ontology have numeric
tags specifying the strength of dependency, (”dependsOn3”, for example)
then some statistical metrics describing the network (nodes and edges) will
be computed and displayed above the graph.

The ”Mean Evidence” metric is the mean value of the set of dependency
arcs strengths. The ”Evidence” term used comes from a medical context
and represents a ranking system used to describe the strength of the results
measured in a clinical trial or research study, though this value could rep-
resent some other type of dependency more generally. For an ontology that

7

Figure 5: BNDE Network Topology tab. The selected ontology’s class-
subclass structure is recreated (dynamic UI) as a interactive folder-tree ap-
pearing on the main sidebar panel (left).

contains a layered dependency such as this, the ”Dependency Slider” can be
changed to exclude nodes below the selected level. If no specific strength is
provided by the ontology, all arcs are considered level 1 strength. Networks
are updated in real-time as this value is changed. With respect to levels of
evidence, one can use this slider to adjust or examine the strength of the
overall network. As previously mentioned, because the software is reactive,
changes in inputs (ontology choice, selected nodes, dependency slider, etc)
will automatically result in re-computation and redrawing of the network
display and any other dependent factors on other tab panels.

Because often the concept names used in ontologies are acronyms or jar-
gon, it can be hard to read the network plot. For this reason, this software
make the nodes of a displayed Bayesian network clickable. Clicking on nodes
will produce their annotated definitions, NCIT definition, or SNOMED-CT
definition, or all three if they exist. The node definition is printed just below
the graph. If there are no definitions then a message is printed below to

8

indicate that nothing was found1.

4.3 Network edge list

On the second tab in the tabset, a searchable, sortable, datatable is provided
which displays the user constructed network’s edge connections and each
edge’s dependency type. A screenshot of this panel is shown in Figure 6.

Figure 6: Edge Panel tab

4.4 Download handling

The download panel provides several options for saving user generated net-
works and obtaining more detailed information from the networks:

• Download a .net file that is compatible with the Hugin Expert2 soft-
ware. The Hugin software can accept a topology generated from this

1Due to unresolved mismatching between server/client click-identification points, this
is an unstable feature and remains in-progress

2Hugin Expert A/S, Aalborg, Denmark

9

Figure 7: Dowloand Panel in the BNDE

tool, and its facilities allow one to populate the conditional probability
tables with user provided data or belief values to make a network fully
computable.

• Download the citations belonging to the network edges. This feature
allows downloading of the entire set of references associated with the
network edges in the network created. Ontologies whose dependencies
contain annotations (e.g. references to a journal publication or other
set of information which supports the dependency evidence between
two concepts) are extractable via this option. In this way, users can
obtain the list of references (read: justifications) for the structure of any
particular network. As part of the way the algorithm creates networks
in this system, some edges/references will appear in this list that might
not appear in the network itself. This is because dependency pathways
might be logically chained from distant nodes via deductive reasoning
methods. In the citation list, the chained dependency is included.

• Download the graphical plot of the user generated network in portable

10

network graphics format.

• Download the current ontology in RDF/XML format. These files can
be viewed or edited using the free, open source ontology editor tool
Protégé or other similar software.

4.5 Exploring dependency paths

The pathway explorer panel includes a feature which allows for examination
of the full dependency paths between any two nodes in a network. This ex-
ploratory feature may be useful to understand further some of the underlying
knowledge within a set of domain concepts. For instance, in the figure be-
low, examining the paths between ”subThingA1” and ”subThingD” reveals
a dependency path which includes a concept node from outside the currently
selected network, ”subThingC”.

Figure 8: Pathway explorer panel

Using this feature is straightforward. Users select one node from each of
the dropdown lists (these are populated from the selected network concepts in
the main panel) and if there are dependency pathways between these nodes,

11

their graphical representation will be computed and shown in this panel, as
well as an edge list below the graph which includes any reference annotations.
There is a download button here as well which provides a spreadsheet file of
the dependencies and their annotations, for the case that one is interested
in exploring a particular set of dependency paths and their reference sources
outside this software.

4.6 Error handling

The BNDE software has been tested in a host of modern browsers including
Chrome, Iceweasel, Firefox, and Opera. The software also works on mobile
browsers, though screen size limits much of what can be performed with this
application as it is not optimized for mobile devices. When known errors
occur during a network request or other operations, user feedback is given
in the form of custom error messages. These errors don’t crash the system,
they simply inform the user. The application runs as usual even after en-
countering these errors. The following is a list of some messages currently
output and what they indicate:

Error messages:

Error: please select additional concepts to create a network

Explanation: This notice occurs when not enough dependent con-
cepts are selected to generate a network

Error: no paths exist for these concepts

Explanation: This notice occurs when no dependency paths exist
between any of the selected concepts, regardless of external constraints

Error: no paths exist for these conditions

Explanation: This notice occurs when dependency paths exist among
the selected concepts, but due to constraints put on by the user (for
example, the dependency slider setting) all the available nodes are ex-
cluded from the network.

Error: no paths exist among these concepts

Explanation: This notice occurs when no dependency paths can be
found to exist between the two selected nodes

5 Summary

The software application described here is a valuable tool for leveraging
dependency layered domain ontologies for building directed graphical net-

12

works in a fairly straightforward way. With this application, researchers can
take advantage of computational elements to subset ontologies and extract
networks and network information. One limitation of this software (in it’s
current beta form) becomes obvious when attempting to select for highly
interconnected networks containing many nodes (30+). The path search al-
gorithm is not optimized for performance, and it can take several minutes
of waiting for a larger network to be constructed. Given real-time updat-
ing, any small change to input parameters of a network restarts the entire
construction process. Despite this limitation, it is expected that network de-
velopment time is still significantly reduced compared to the task of manually
researching and justifying dependency among a similarly large set of domain
concepts. Additionally, both breath-first and depth-first search algorithms
process on a time proportional to the order of the number of edges plus the
number of nodes, which sets a fundamental lower computational bound.

References

References

[1] R Development Core Team. shiny: Web application framework for r,
2014.

[2] Mark Otto and Jacob Thornton, 2011.

[3] RStudio, 2014. Accessed: 2014-09-30.

13

